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Abstract. We have found similarity reductions for the deformed Maxwell-Bloch system to the 
fifth and second Painlev6 equations. Asympmtics of the solutions of these equations, which are 
relevant to two-level atomic systems with pumping, have also been derived. 

1. Introduction 

There has been considerable~interest in the Painlevt equations over the last fifteen years. 
The main reason for this interest is the appearance of these equations as similarity reductions 
of equations that are integrable via the inverse~scattering transform, and in the asymptotic 
analysis of correlation functions of exactly solvable quantum models. Despite the many 
similarity reauctions and asymptotic properties of Painlev6 equations which have already 
been found, in many cases the properties of the similarity solutions of nonlinear soliton- 
bearing equations are still unknown. The difficulty involved i n  this approach is usually the 
complexity of the expressions of similarity solutions~ in terms of Painlev6 equations and, 
thereby, application of the known asymptotic properties of these equations. This is the 
problem we address in this paper in the context of a model in nonlinear optics. 

We shall consider in this paper the decoupled deformed Maxwell-Bloch system: 

+ N + ; ( E g + E e ) = 4 s  

where 6 ,  q and s are complex variables and E,  E, e,  and N are smooth complex 
functions of these three independent variables. ~ Note that bars do not necessarily denote 
complex conjugation. 

We have chosen this system because it shares the difficulty mentioned above and because 
there are two reductions of system (1) which are of physical importance. 

The first reduction of system (I), E = E*, $ = e* and N = N* with real <, 7 and 
s (the asterisk means complex conjugation), was reported in 111. In this reference the 
possibility of applying the inverse scattering transform with a variable spectral parameter 
to this system was pointed out, and a possible physical interpretation as a two-level atomic 
system (Maxwell-Boch system) with a pumping mechanism discussed. We shall treat this 
case in more detail in section 5. 

The second reduction of system (l), E = -E*, = -e* and N = N* with real 6 ,  0 
and s, w& reported in [2] in another physical context. 
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It appears that a correlation function of the one-dimensional impenetrable Bose gas with 
a &function potential, an exactly solvable quantum model, is given by a special solution 
of (1). The asymptotic behaviour of this solution was thoroughly investigated in [ZJ for 
different values of the parameters. In one region of the parameter space the long-distance 
asymptotics of this special solution 'shows similarity. In the case of the first reduction 
mentioned above, the asymptotics of physically relevant solutions have not yet been found. 

In the case of the second reduction above and also of the Maxwell-Bloch system without 
pumping 131, similarity solutions play an important role in the asymptotic behaviour of the 
physical solutions. As a first step in this direction for system (1) we consider the asymptotic 
behaviour of its similarity solutions and specify those parts of the parameter space where 
these asymptotics can describe a real physical process. 

The first similarity reduction of system ( I )  to the fifth PainlevC equation (Ps) was 
reported by Winternitz in [4] in the particular case when both the dependent and independent 
variables are real. In this case the reduction was made possible by application of results 
by Bureau for equations with the Painlev6 property and which are quadratic with respect 
to the second derivative [5]. The asymptotics of the particular case of Ps which appears in 
this connection were investigated in [6]. There are two difficulties in applying the results 
of [6] however. The first difficulty is related to the fact that only the leading term in the 
asymptotic behaviour of E can be obtained. This term does not depend on any of the 
parameters of the full solution and, therefore, it is not clear how these parameters should be 
chosen for the real reduction that is essential in the approach of [4]. The second difficulty is 
related to finding the correct expression for N .  Here one needs to take into account not only 
the leading but also the next to leading terms in the PS asymptotics in the case considered 
in [6], and these have not yet been obtained. 

In order to avoid these difficulties we have applied the method proposed in [7], in which 
similarity reductions of the Einstein-Maxwell equations, which are also known [8] to be 
completely integrable via the inverse scattering transform with variable spectral parameter, 
are dealt with. The basic idea of the method applied in [7] is to specify the data of the 
Riemann-Hilbert (RH) problem in the plane of the 'hidden' spectral parameter and thereby 
to deduce a similarity substitution and the auxiliary linear ordinary differential equation with 
respect to the spectral parameter. It turns out that the similarity solutions themselves define 
isomonodromic deformations of the auxiliary equation. This makes it possible to apply 
the methods described in [9,11,12] to the evaluation of the asymptotic properties of the 
similarity solutions. The structure of the paper is as follows. In section 2 we formulate in 
the usual way a generalized problem. Any solution of this RH problem generates a solution 
of system (1). In sections 3 'and 4 we define specifications of the data of the RH problem 
such that they correspond to the similarity reductions of (1) to the fifth (P5) and second 
(Pz) Painlev6 equations respectively. The physical background of the problem is discussed 
and the appropriate asymptotics of the similarity solutions are reported in section 5. 

2. The matrix Riemann-Hilbert problem 

Let us consider the linear system 

S 1 

h 4h. 
a,,* +-a,* = -,p 
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where 

and Y(E, q ,  A; s) is a 2 x 2 matrix function, and A is a spectral parameter. 
It is easy to prove [l] that the set of equations (1) is the compatibility condition 

A 4A ' I  S [as - An3 - U,,, a, + -aA~-  -6 = ~ o  

for this system. 

case equation (3) will be replaced by 
Another equivalent formulation of the problem is to allow A to depend on q,  in which 

1 
4A 

a,,* = -$Y (4) 

and the linear system (2)  with (4) will be supplemented with the equation for the spectral 
parameter A. 

a,A = 311.. (5) 

Equation (5 )  can immediately be integrated to give 

A = J W  

where k2 is a constant of integration. 
introducting into the system (2) with (3) a 'hidden' spectral parameter k in the form 

This observation provides the motivation for 

The following analytical properties in the complex k-plane of the function * can now easily 
be deduced from equations (2) and (3): 

(i) The function Y(c, q ,  k) is holomorphic and invertible (in the matrix sense) in the 
complex k-plane excluding the points k = CO, h,l = &e, and probably a set of points 
(ai) and oriented contours [rj) which are both independent of c and q. 

(ii) At k = cc the matrix function Y has an essential singularity and in its vicinity it 
behaves asymptotically as 

(iii) At the points k = ko,, the matrix function Y has a regular singularity and in its 
vicinity it behaves asymptotically as 

Here P, are 2 x 2 matrices independent o f f  and q with det P, # 0. 
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(iv) For k E (ai)  both regular and essential singularities are allowed. Leading terms of 

(v) detq(.$, r ) ,  k)  =constant # 0. 
The following conjugation problem is posed on the set of contours [rj]: 

the corresponding asymptotic expansions do not depend on e and q .  

'JJ+(.$, q v k )  5 'JJ-E, V.k)Gj(k) k E rj (10) 

where **(e, q ,  k )  are the boundary values of *(e,  r ) .  k) on rj from the left and from the 
right respectively, and the conjugation matrices G j ( k )  do not depend on e and r).  

The problem of the construction of the Y-function as a solution of the conjugation 
problem (10) such that it satisfies the five properties above, we shall call hereafter the 
generalized RH problem. In the following we refer to the set of contours (rj], the 
corresponding set of conjugation matrices [Gj (k ) ] ,  the above mentioned singular points 
with matrices P, and the constants 0, and 0, as the data of the RH problem. 

Once the RH problem is solved, i.e. the Wfunction with the desired analytical properties 
is constructed, then by standard arguments (see e.g. [13]) that make use of Liouville's 
theorem, it can easily be proven that this Y-function satisfies equations (2)  and (3). 
Furthermore, from this solution the functions E(.$, r ) )  and E($, r ) )  can be found by applying 

The other components of the solution, namely e[$, q) ,  ?(e, v )  and N ( f ,  r))> can be found 
directly from the nonlinear system (1). 

We do not discuss here the complicated general problem of specification of the data of 
the RH problem in such a way that the RH problem becomes solvable. Instead of this we 
consider in sections 3 and 4 two particular examples of this specification. 

3. Similarity reduction to the fifth Painlev6 eqnation 

To begin with let us define the isomonodromic class of the solutions of system (1) by the 
condition 

(12) 

where Gj(k)  are the conjugation matrices defined in (10) and the elements of matrices Gjo) 
are independent of k.  The coefficients of polynomials P,(k) and constant ct are independent 
of .$, q and j .  In other words the independence from j means that the factorization (12) 
is the same for each of the contours rj. For other completely integrable systems the 
isomonodromic solutions aye defined in an analogous way. Similarity solutions always 
belonz to the isomonodromic class with one (so far) known exception [14]. It is an 
interesting problem to find the spectral interpretation of this case. 

Let us consider the simplest particular case of representation (12) when the Gj are 
constant matrices independent of k.  Using now the properties of the Y-function (see the 
previous section), it is easy to prove that the expession 

G j ( k )  = e(pn(k)*l"kh G(a)e-(pm(k)+U 1"k)G3 
I 

(ka# + zr)a,,q - e a e * ) .  ~ - l  (13) 
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is a bounded entire analytical function in the complex k-plane. Liouville’s theorem~now 
tells us that expression (13) is a constant which can easily be deduced from the asymptotic 
expansion (8). 

In this way we find an additional equation, 

kqk  .+ 2qv,, = - emu3* (14) 

for function ‘4’. This equation can be solved by the method of characteristics: 

The two integrals of equation (15), namely 

(16) p = kq- 112 

*( t ,  q,k) =exp(-~e,inqu3)a(pL,z). (17) 

lead to the following form for function ‘4, 

In terms of the self-similar substitution (16) with (17), the asymptotic expansion (8) can be 
rewritten for p - CO as 

(1.8) 

Expansion (18) means that the coefficient of the leading term @ - ] ( z )  of the expansion of 
O(p,  z )  is given by, 

q )  = ~ 1 / 2 - ~ ~ ~ ~ J ~ ~ _ l ( 2 ) 7 ~ = ~ ~ / 2 .  (19) 

Notice that a-1 is only a function of the self-similar variable e. 
equations (19) and (11) now leads to a self-similar form for E(.$, q )  and I?([, q ) ,  

A comparison of 

E(.$, q )  = ,”2-8-&(z) E ( [ ,  q) = ql’”#=E(z). ~(20) 

The corresponding self-similar substitutions for polarization and inversion can be deduced 
from the nonlinear system (1). 

-iiz+a, - e(.$, q )  = p - 0 -  P ( Z )  a(.$, i) = ? P ( Z )  N E .  q )  = v-”%z). (21) 

As mentioned in the introduction, RH problems of type (10) cannot be completely 
solved. In order to identify a soluble case- we should define the data of the RH problem 
more precisely. To this end in system (2) with (3) we change the variables .$, q and A, 
where h is given~by equation (6). to the self-similar variables p and z defined in (16). 

It is also convenient, to shift the regular singularities at k = ko.1 to points k = 0 and 
k = 1, respectively. In this way we arrive at the transformation 
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under which system (2), (3) takes the form 

where 

An alternative way of deriving equations (23) and (24) is to employ the change of 
variables (22) in equations (14) and (2). Notice that we do not introduce new notation 
for the new functions E(?) ,  p(s)  and n(r)  which are, respectively, equal to the functions 
&(z), p(z) and n(z)  abovet. The asymptotic expansions (8) and (9) are all transformed under 
the change of variables (22). One finds that, in the vicinity of the essential singularity a t  
< = 00, the function Y(<, t )  has the asymptotic expansion 

and in the vicinity of the regular singular points a0.1 = 0, 1, it has the asymptotic expansion 

It can readily be shown that the compatibility condition (ara,y = a,a,Y) for the linear 
system (23) with (24) is the following system of nonlinear ordinary differential equations 
(which is system (1) in terms of the self-similar variable T), 

+(?E(?))‘ = p ( r )  +e,&(?) 

4 1 / z p ’ ( S )  = & ( T ) n ( r ) ~  4&j‘(T) = 2(5)11(?) (30) 

4&n’(r) + $ ( T ) F ( T )  +E(r)p(r ) )  = 4s. 

+(rg(?))’ = p(s)  - ~ = E ( T )  

t Strictly speding we should write .?(I) = E(z)  and so on. 
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This system is solvable at least locally which means that the linear system'(23) with (24) is 
compatible. 'Because of this fact it is possible to construct a solvable RH problem by using 
the analytical properties with respect to  R of the solutions of equation (23) (see e.g. [9, lo]).  

On the other hand the existence of equation (24) means that the solutions of system (30) 
define isomonodromic deformations of system (23). As shown~by Jimbo and Miwa [lS] ,  
the isomonodromic deformations of system (23) with (24) can be described by solutions of 
P5 which is 

The parameters 01. ,!?, y and 6 are connected with 9, and 0, (see 1151) such-that 

01 = +(eo - 6 ,  + ze,)* 
y = i - e o - o ,  6 = - L  

B = 4 6 ,  - e, - ~ 0 , ) ~  
(32) 

4 

2 '  

By comparing the matrices VO, V I  and L( with the results of /15] concerning PI, we can find 
a parametrization of the solution of system (1) in terms of the solution of the fifth Painlev6 
equation. In this way we find 

1 
2 + -(SOo + 301 - 20,) (35) 

eo+e, 1 
n(T) 2 6  +- (y 4 ) 2 ~  y - 1 

("(' - ") (37) 

where U is the solution of 

(e, -e1 - 20,). -el) - -CO, -e1 - 48,) - - 1 (Y - 
2 4Y 

d 

(38) 

Notice that two integrals of motion of system (30) can easily be derived. By substituting the 
asymptotic expansion (29) into equation (23) wefmd that the eigenvalues of the matrices YO 
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and V I  are MO and *& respectively. It follows that detV, = -er2; r = 0.1, are integrals 
of system (30), where 

A V Kitaev et a1 

(40) 

In the case of the real reduction, 

t = 5' C ( T )  = &*(r) = &(t) eo '- - ( 0, = O  (41) 

we recover the particular case of these integrals obtained by Winternitz [4]. 

4. Similarity reduction to the second Painlev6 equation 

Another example of specifying the data of the RH problem is provided by a particular case 
of equation (12) for which 

G j ( k )  = exp (Ak3u3)Gy' exp (-Ak3u3). (42) 

Here A is a new arbitrary parameter independent of e and q. By using the same 
arguments as in section 3 we can find the auxiliary equation the function 'P($, q. k )  must 
satisfy, 

' P k  - 3Ak'Pf - ( k / S ) ' P n  = 0. (43) 

The solutions of equation (43) have a self-similar form, 

In the same way as in section 3,  i.e. by using equations (44), (8) and (1 l), we can construct 
the self-similar substitution for the nonlinear system (I), 

E($. II) = ~ ( i )  d t , ~ )  = r(i) Wes = E(?). (45) 

If in system (2) with (3) we change the variables $ and q to the self-similar variable i given 
by equation (44), then, after appropriate scale transformations, it takes the form 
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and 

V 1 = 2 U = -  2 (-.?)' 'b") . 
Notice that thenew functions E(?), r(?) and E(?) are equal to the old functions ' ( 2 ) .  r ( i )  
and E(Z) respectively. In the vicinity of the essential singular point at 5 = 00 the following 
asymptotic expansion is valid: 

Y-I(?) Y ( 5 , t )  - (I + - 
5 

The nonlinear system (1) expressed in terms of the self-similar variable ? (see equations (48)) 
now takes the form 

- ~ S ( ~ A ) * ~ E ' ( ? )  = r (?)  - 2~(3A)"~Z'( i )  = $7) 

2r'(?) = mi(?)C(f) 2?'(?) = mii(oq?) (52) 

Equations (52) are  the^ compatibility condition for the linear system (46) with (47) or, in 
other words, equations for the isomonodromic deformations of equation (46). On the other 
hand, it was shown by Jimbo and Miwa [15J that these isomonodromic deformations are 
given by the second Painlev6 equation (Pz), 

Comparison of the matrices Vo, V, and U and the results of Jimbo and Miwa [I51 for Pz 
leads to a parametrization of the solutions of system (46) in terms of the solutions of the 
second Painlev6 equation such that ~ ~ 

where $o is an arbitrary constant. Here F satisfies the equation . 

which is connected to (53) by the formulae 
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5. Asymptotics 

Recall first that there is a physical context for the first reduction of system (1) (see 
introduction). The system of the Maxwell-Bloch equations, 

A V Kitaev et al 

a,E = e a,@ = N E  a,N+ ~ ( E Q *  + E*@) = o (61) 

describes the interaction of an optical pulse with an active medium consisting of two-level 
atoms in the case of an infinitely narrow spectral line (see e.g. [16-18]). In this case e and 
q are real variables connected with the natural spacetime variables x and t ,  

q = a x / c  e = a ( t - x / c ) .  (62) 

Here = 2xnowofiz/k, no is the density of atoms in the active medium, /I is the dipole 
matrix element of the two-level atom and wg is the resonance frequency. 

The Maxwell-Bloch system is derived by substituting into the Maxwell equations a 
linearly polarized plane wave with slowly vvying amplitude and phase and moving to the 
right. In the framework of the inverse method as applied to system (61). x plays the role 
of the evolution variable and therefore the Cauchy problem for the Maxwell-Bloch system 
is naturally posed on the semi-axis x 

The dynamical variables E and e are slowly varying complex amplitudes of the electric 
field and polarization respectively. The real variable N is the population inversion of the 
excited atoms in the medium. It is evident that N varies within the interval [-I, 11 for 
physically relevant solutions. 

As mentioned in the introduction, an extension of the inverse scattering transform 
method [l] leads to a ‘deformation’ of system (61) such that 

0. 

a,E = @ a,@ = N E  a{N + $(E@* + E*@) = 4s. (63) 

Although the derivation of this system given in 111 is entirely formal, the constant source 
term 4s > 0 can be interpreted as an additional excitation of the active medium due to 
external sources. This is why the authors of [l] called the system (63) the ‘Maxwell-Bloch 
system with a pumping’ or the ‘deformed Maxwell-Bloch system’. It is evident that a 
more detailed investigation of a possible origin for this interaction is needed for a physical 
realization of the deformed Maxwell-Bloch system. 

The initial data of the Cauchy problem for a nonlinear partial differential equation 
usually have no similarity structure when a real physical process is described. In other 
words the similarity structure of the initial data corresponds to a very special initial state of 
the relevant physical system. Moreover, very often a similarity solution has a singularity 
at the initial point which means that the corresponding initial state of the physical system 
cannot be prepared. 

Nevertheless, for a large class of soliton equations, it can be proven that solutions 
for rapidly decreasing initial data show similarity at late times. For integrable models, in 
particular, we have in mind here the schemes proposed in [19] and [20]. In this section, 
assuming that the approaches developed in [ 19,201 can be applied to system (l), we shall 
derive the asymptotics of its similarity solutions. 

In order to discuss the asymptotics of the solution of (63) in the case when it is reduced 
to Ps, we need first to consider the choice of parameters in the relevant solution of Ps. It 
is easy to verify that the reduction 2 = E*, p = p* and n = n* in system (30) for i =, r*, 
s > 0 is provided by the specification of Ps: 

eo = e; em=-e;~ y = ~ * ~ o  (64) 
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which defines a. solution of (30) with six real parameters. 
Notice that for s < 0. r = -r~* the same reduction is achieved by the choice 

e, = e, ='e;., em = -e;9 y = I/Y*. In a particuiar case of (64) for which 

Om = 0 . and eo = el = e: 
equations (33)-(37) are reduced to 

P ( S )  = - 

where @ is an arbitrary real constant. Equations (66)-(68) define a solution of system (30) 
which depends on four real parameters. It is shown in 1211 that, when the parameters of Ps 
are specified by equation (65), the asymptotic behaviour of the solution of P5 for r e CO 

is given by the two-parameter asymptotic expansion 

where (w = !p - 2a2 In 5 + E). Here 0 < a and a are real parameters. This solution is 
negative for 7 + 00 which is important for our approach. For the choice (65), the original 
dynamical variables take the form 

By substituting expansion (69) into (66)<68) we  find^ the following asymptotic expansions 
in terms of independent variables x + +CO and t (see (62)): 

Here NO = Sasp, and p z  = t/& = constant 0. Using the physical condition 
that IN1 < 1 one finds that the constant p can be chosen arbitrarily within the interval 
IpI < 1/8as, and thus asymptotics (71)-(73) are valid in the spacetime sector 
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We turn next to the appropriate asymptotic solutions in the case of reduction to Pz. 
It is evident from equations (54>-(58) that for ? = ?*, s > 0 the reduction Z(f) = c*(f), 

7(?) = r*(?), E(?)  = i*(t) can be realized if and only if F(i) = F*(?) > 0, 

though U(?) for real F(?) is complex, i(?) defined by equation (56) is real. As before 
y(?) should be chosen in such a way that i(?) varies within the interval [-I, I]. There 
is a three-real-parameter family of similarity solutions which satisfy these requirements. 
This family is parametrized by the parameter +4 and by a two-real-parameter family of PZ 
solutions which for ? + -CO have the asymptotics 

,... ,.. ,... ,. . ., ,. .. 

e, = -e* = 101 ' and 40 = I n d +  i+4. Now, it follows from equations (60) that, even 

y = (1/2 - e)/(-?) + u(7-4). (75) 

The second parameter is CY and the third is the coefficient of an exponentially small term 
which is omitted in (75) (see [21]). By substituting (75) into (54)-(58) and (60), we finally 
arrive at the following asymptotic solution for the deformed Maxwell-Bloch system: 

In the natural spacetime variables x and f, 

where v = c/(l 3- 3As) is the phase velocity of the signal. Taking into account that 
0 < U 4 c, it is evident that A 

The asymptotic solutions (76)-(78) in terms of the natural spacetime variables, are valid 
in the regions: 

(i) for any g c 1 + 3As, c t / x  < q with x + +CO, 

(ii) t + -CO (recall that x > 0). 
We can conclude that for both similarity reductions the electric field grows as f i  for 

x + +W. It is interesting to notice that this behaviour for the electric field was found 
in [22] for a soliton solution of the deformed Maxwell-Bloch system. 

0. 
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